本课程系统整合 ChatGPT、生成式 AI、提示词工程与数据科学技能,从 AI 基础、NLP、可视化、EDA 到机器学习算法(回归、SVM、随机森林)全流程覆盖。你将学习如何用 ChatGPT 分析数据、生成代码、构建模型与优化参数,掌握最新 GPT-4o 图像、语音、翻译功能,并完成多项实战项目。适合有 Python 基础的 AI 学习者,是迈向 AI 工程与数据分析进阶的实用课程。
生成式 AI 与数据科学全能课:用 ChatGPT 与 Python 实战提示词工程与机器学习建模
本教程为高质量英文原版视频课程,英文基础较弱的同学可通过翻译插件辅助学习。
=====================================================
教程名称:Generative AI & ChatGPT Mastery for Data Science and Python
下载连结:https://www.nidown.com/chatgpt-323152.html
=====================================================
最便捷、最实惠的 ChatGPT Plus 升级服务来了!!!
点击查看详情:https://www.kkmac.com/go/chatgpt
=====================================================
英文原版介绍
Published 12/2024
Created by Oak Academy,OAK Academy Team,Ali̇ CAVDAR
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 198 Lectures ( 24h 6m ) | Size: 10.3 GB
Master Generative AI, ChatGPT and Prompt Engineering for Data Science and Python from scratch with hands-on projects
What you’ll learn
What is Artificial Intelligence?
Artificial Narrow Intelligence (ANI)
Artificial General Intelligence (AGI)
Artificial Super Intelligence (ASI)
Subsets of Artificial Intelligence – Machine Learning
Subsets of Artificial Intelligence – Deep Learning
Machine Learning Study with a Real Example
Large Language Models(LLM)
Natural Language Processing(NLP)
A Warning Before Switching to ChatGPT
Revolutionary of the Era: OpenAI
Let’s Get to Know the ChatGPT Interface
Differences in the ChatGPT-4 Interface
ChatGPT’s Endpoints
Prompt Prompt Engineering Power
Summary of Prompt Engineering Fundamentals
Prompt Engineering: Sample Prompts
Best Questions in Prompt Engineering
Summary of the Best Questions in Prompt Engineering
Reinforcing the topic through a scenario
Drawing a Roadmap to the Prompt
Directed Writing Request
Clear Explanation Method
Example-Based Learning
RGC(Role, Goals, Context)
Constrained Responses
Adding Visual Appeal
Prompt Updates
ChatGPT-Google Extension
Email Writing
Summarizing YouTube Videos
Talk to ChatGPT
Quick Access to ChatGPT
Dive Into Websites
Get Prompt Assistance
Using the ChatGPT API
File Reading
Visual Reading
Visual Generation (DALL-E Introduction)
Enhancing Images with DALL-E
Improving Visuals Through Ready-Made Prompts
Combining Images
A Helper Site for Visual Prompts
GPTs
Create Your Own GPT
Useful GPTs
Big News: Introducing ChatGPT-4o
How to Use ChatGPT-4o?
Chronological Development of ChatGPT
What Are the Capabilities of ChatGPT-4o?
Voice Communication with ChatGPT-4o
Instant Translation in 50+ Languages
Interview Preparation with ChatGPT-4o
Visual Commentary with ChatGPT-4o
Data analysis is the process of studying or manipulating a dataset to gain some sort of insight
Big News: Introducing ChatGPT-4o
How to Use ChatGPT-4o?
Chronological Development of ChatGPT
What Are the Capabilities of ChatGPT-4o?
As an App: ChatGPT
Voice Communication with ChatGPT-4o
Instant Translation in 50+ Languages
Interview Preparation with ChatGPT-4o
Visual Commentary with ChatGPT-4o
ChatGPT for Generative AI Introduction
Accessing the Dataset
First Task: Field Knowledge
Loading the Dataset and Understanding Variables
Let’s Perform the First Analysis
Examining Missing Values
Examining Unique Values
Categorical Variables (Analysis with Pie Chart)
Exploratory Data Analysis (EDA)
Categoric Variables vs Target Variable
Correlation Between Numerical and Categorical Variables and the Target Variable
Relationships between variables (Analysis with Heatmap)
Numerical Variables – Categorical Variables with Swarm Plot
Dropping Columns with Low Correlation
Visualizing Outliers
Determining Distributions
Applying One Hot Encoding Method to Categorical Variables
Feature Scaling with the RobustScaler Method for Machine Learning Algorithms
Feature Scaling with the RobustScaler Method for Machine Learning Algorithms
Logistic Regression Algorithm
Cross Validation
ROC Curve and Area Under Curve (AUC)
ROC Curve and Area Under Curve (AUC)
Hyperparameter Tuning for Logistic Regression Model
Decision Tree Algorithm
Support Vector Machine Algorithm
Random Forest Algorithm
Generative AI is artificial intelligence (AI) that can create original content in response to a user’s prompt or request
Getting to know the dataset using ChatGPT
Getting started with Exploratory Data Analysis(EDA) using ChatGPT
Perform Multivariate Analysis using ChatGPT
Prepare data for machine learning model using ChatGPT
Create a machine learning model using the Linear Regression algorithm with ChatGPT
Develop machine learning model using ChatGPT
Perform Feature Engineering using ChatGPT
Performing Hyperparameter Optimization using ChatGPT
Loading Dataset using ChatGPT
Perform initial analysis on Dataset using ChatGPT
Performing the first operation on the Dataset using ChatGPT
Tackling Missing values using ChatGPT
Performing Bivariate analysis with CatPLot using ChatGPT
Performing Bivariate analysis with KdePLot using ChatGPT
Examining the correlation of variables using ChatGPT
Perform a get_dummies operation using ChatGPT
Prepare for Logistic Regression modeling using ChatGPT
Create a Logistic Regression model using ChatGPT
Examining evaluation metrics on the Logistic Regression model using ChatGPT
Perform a GridSearchCv operation using ChatGPT
Model reconstruction with best parameters using ChatGPT
Requirements
A working computer (Windows, Mac, or Linux)
Motivation to learn the the second largest number of job postings relative AI among all others
Desire to learn AI & ChatGPT
Curiosity for Artificial Intelligence and Data Science
Nothing else! It’s just you, your computer and your ambition to get started today
Basic python knowledge
原创文章,作者:安生部落,如若转载,请注明出处:https://b.mincm.com/chatgpt-49203.html